

SEDENA: Proyecto TREN MAYA
NÚMERO DE PROVEEDOR DGI/TM/C-ELE-22-0936

Nuestros Materiales Pétreos: Basalto y Tezontle

Presentación Junio de 2023

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

I. Localización Geográfica de nuestros Bancos de Materiales Pétreos: Basalto

I.1. Parcela 197

El sitio en el cual se desarrollará el Banco de Materiales se localiza en la localidad de Tapalapan, Municipio de Santiago Tuxtla, Estado de Veracruz; el acceso se realiza a través de la Carretera Federal Costera del Golfo180.

El predio en estudio presenta una superficie total de aproximadamente 4,800 metros cuadrados, la cual se considera como área explotable. La Figura 1 muestra su ubicación.

Figura 1.- Localización regional de la zona de estudio.

Los vértices que definen el polígono a explotar quedan definidos por los puntos que se presentan en la Tabla 1, Figura 2.

Punto	Posición X	Posición Y	Longitud	Latitud
V1	255050.6393	2051218.75	-95.3204639	18.5373643
V2	254940.1588	2051336.502	-95.3215243	18.5384148
V3	254829.2197	2051295.383	-95.3225696	18.5380305
V4	254914.4135	2051297.172	-95.3217632	18.5380566
V5	254926.0288	2051164.401	-95.3216370	18.536859
V6	254970.0797	2051159.007	-95.3212193	18.5368154
V7	255119.4151	2051095.02	-95.3197977	18.536255

Tabla 1. Vértices que definen el polígono propuesto para extracción de roca.

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

I.2. Parcela 145

El sitio en el cual se desarrollará el Banco de Materiales se localiza en la localidad de Tapalapan, Municipio de Santiago Tuxtla, Estado de Veracruz; el acceso se realiza a través de la Carretera Federal Costera del Golfo180.

El predio en estudio presenta una superficie total de aproximadamente 4,800 metros cuadrados, la cual se considera como área explotable. La Figura 1 muestra su ubicación.

Figura 1.- Localización regional de la zona de estudio.

Los vértices que definen el polígono a explotar quedan definidos por los puntos que se presentan en la Tabla 1, Figura 2.

Punto	Posición X	Posición Y	Longitud	Latitud
V1	255171	2051698	95°19'09.79"O	18"32'30.20"N
V2	255125	2051719	95°19'11.36"O	18°32'30.87"N
V3	255092	2051716	95°19'12.49"O	18°32'30.76"N
V4	255047	2051657	95"19'14.00"O	18°32'28.83"N
V5	255057	2051637	95°19'13.64"O	18°32'28.17"N
V6	255061	2051634	95°19'13.51"O	18°32'28.07"N

Tabla 1. Vértices que definen el polígono propuesto para extracción de roca.

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

II. RESULTADO DE LOS ESTUDIOS GEOLOGICOS DE NUESTROS BANCOS

Los cálculos se llevaron a cabo mediante los métodos Racional Americano y del Hidrograma Unitario Triangular, de los cuales gasto calculado por el Método Racional Americano es el que se tomó para definir los resultados que se obtuvieron en el presente estudio por ser un método que arrojó los máximos resultados y el método más usado en drenaje urbano.

Para obtener el gasto de diseño del predio "PARCELA 197" se tomó un periodo de retorno de 10 años y una duración de 10 minutos debido a que, bajo estas consideraciones, un evento de lluvia con estas características provoca un volumen de agua grande en un periodo de tiempo pequeño. El gasto de diseño del predio se obtuvo para un periodo de retorno de 10 años y un tiempo de concentración de 10 minutos; tomando previamente las recomendaciones de la CONAGUA.

El gasto máximo probable calculado en el predio "PARCELA 197" es de 1.61 m3/s para el periodo de retorno de 10 años y una duración de tormenta de 10 minutos, dicho gasto fue calculado con una intensidad de lluvia de 285.71 mm/h.

En las siguientes tablas (Tabla 20 a Tabla 22) se muestra el cálculo de los gastos calculados con el Método Racional Americano y el Método del Hidrograma Triangular para distintos periodos de retorno seleccionados tomando en cuenta las características fisiográficas de la Parcela 197.

	ACIONAL	AMER	ICANO					
Q = 2.778 C I A CUENCA No.	FACTOR DE CONVERSION	С	l (mm/hr)	Tc (minutos)	TD (minutos)	A (has)	Q (m³/seg)	TR años
PARCELA 197	2.778	0.85	182.93	10	10	2.250	0.97	2
PARCELA 197	2.778	0.88	241.45	10	10	2.250	1.33	5
PARCELA 197	2.778	0.90	285.71	10	10	2.250	1.61	10
PARCELA 197	2.778	0.95	344.23	10	10	2.250	2.04	25
PARCELA 197	2.778	0.98	388.49	10	10	2.250	2.38	50
PARCELA 197	2.778	0.99	432.76	10	10	2.250	2.68	100
PARCELA 197	2.778	0.99	535.54	10	10	2.250	3.31	500
PARCELA 197	2.778	0.99	579.80	10	10	2.250	3.59	1000

Tabla 20.- Gasto calculado con el Método Racional Americano

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

CUENCA	i i	- P	Pe	A	С	Duración de la literia (d)		7c	Op	Qu	TR
No.	(mmite)	{mm}	(mm)	(km2)		(extractor)	{horas}	(hovas):	(m ⁵ lseg)	(m³/seg)	años
PARCELA 145									.85	(Número de escurimiento)	
PARCELA 117	182.93	39.49	26.03	0.023	0.85	10.0	9.37	0.17	0.70	9.56	2
PARCELA 197	241.45	49.24	35.32	0.023	0.88	10.9	0.17	0.57	1.03	0.90	S
FARCELA 197	285.71	47.52	42.63	0.023	0.90	10.0	0.17	0.17	1.22	1.09	10
PARCELA 197	344.23	57.37	54.46	0.023	0.95	10.0	0.17	0.17	1.46	1.39	25
PARCELA HIF	388.49	64.75	63.17	8.023	0.98	10.0	0.17	0.17	1.66	1.61	50
PARCELA HIT	432.76	72.13	71.19	0.023	0.99	10,0	0.17	0.17	1.84	1.82	100
PARCELA 197	135.54	89.26	89.32	0.623	0.99	10.0	0.17	0.17	2.28	2.25	500
PARCELA 157	579.80	96.63	95.70	0.023	0.99	10.0	0.17	0.17	2.47	2.44	1001

Tabla 21.- Gasto calculado con el Método Hidrograma Triangular

Cuencas	Tr		Gasto de Promedio	
Connicas	11	Racional Americano	Hidrograma Unitario Triangular	csasco de Promedi
	Años	m ⁵ /s	m³/s	m³/s
PARCELA 197	2	0.97	0.66	0.82
PARCELA 197	5	1.33	0.90	1,11
PARCELA 197	10	1.61	1.09	1.35
PARCELA 197	25	2.04	1.39	1.72
PARCELA 197	50	2.38	1.61	2.00
PARCELA 197	100	2.68	1.82	2.25
PARCELA 197	500	3.31	2.25	2.78
PARCELA 197	1000	3.59	2.44	3.02

Tabla 22.- Resumen de los métodos utilizados

Para representar el comportamiento de la avenida de diseño se utilizó la metodología para construir el hidrograma representativo de cada una de las cuencas analizadas utilizando la propuesta por el Soil Conservation Service (SCS), el cual fue desarrollado después del estudio de una gran cantidad de hidrogramas y de cuencas. Este hidrograma se obtiene de dividir la escala de los gastos entre el gasto pico (Qp) y la escala del tiempo entre el tiempo pico (tp). En la Tabla 23 se tienen los valores de construcción del hidrograma resultante.

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

Tiempo (min)	Gasto (m ³ /s)	Tiempo (min)	Gasto (m³/s)	Tiempo (min)	Gasto (m³/s)
0.00	0.000	1.20	0.920	2.60	0.130
0.10	0.015	1.25	0.880	2.75	0.105
0.20	0.075	1.30	0.840	2.80	0.098
0.30	0.160	1.40	0.750	3.00	0.075
0.40	0.280	1.50	0.660	3.25	0.053
0.50	0.430	1.60	0.560	3.50	0.036
0.60	0.600	1.75	0.450	3.75	0.026
0.70	0.770	1.80	0.420	4.00	0.018
0.75	0.830	2.00	0.320	4.25	0.012
0.80	0.890	2.20	0.240	4.50	0.009
0.90	0.970	2.25	0.220	4.75	0.006
1.00	1.000	2.40	40 0.180 5.00		0.004
1.10	0.980	2.50	0.150		

Tabla 23.- Datos de Hidrograma SCS.

El hidrograma resultante del análisis de la avenida de diseño del predio, representado por la Figura 34.

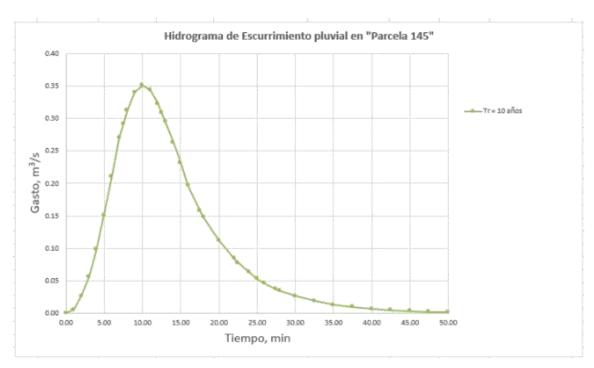


Figura 34.- Hidrograma resultante del gasto generado en el predio "PARCELA 197" para un Tr = 10 años

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

Los cálculos se llevaron a cabo mediante los métodos Racional Americano y del Hidrograma Unitario Triangular, de los cuales gasto calculado por el Método Racional Americano es el que se tomó para definir los resultados que se obtuvieron en el presente estudio por ser un método que arrojó los máximos resultados y el método más usado en drenaje urbano.

Para obtener el gasto de diseño del predio "PARCELA 145" se tomó un periodo de retorno de 10 años y una duración de 10 minutos debido a que, bajo estas consideraciones, un evento de lluvia con estas características provoca un volumen de agua grande en un periodo de tiempo pequeño. El gasto de diseño del predio se obtuvo para un periodo de retorno de 10 años y un tiempo de concentración de 10 minutos; tomando previamente las recomendaciones de la CONAGUA.

El gasto máximo probable calculado en el predio "PARCELA 145" es de 0.35 m3/s para el periodo de retorno de 10 años y una duración de tormenta de 10 minutos, dicho gasto fue calculado con una intensidad de lluvia de 285.71 mm/h.

En las siguientes tablas (Tabla 20 a 22) se muestra el cálculo de los gastos calculados con el Método Racional Americano y el Método del Hidrograma Triangular para distintos periodos de retorno seleccionado tomando en cuenta las características fisiográficas de la Parcela 145.

MÉTODO R. D-2.778 CIA	ACIONAL	AMER	ICANO					
CUENCA No.	FACTOR DE CONVERSION	С	l (mm/hr)	Tc (minutos)	TD (minutos)	A (has)	Q (m³/seg)	TR años
PARCELA 145	2.778	0.85	182.93	10	10	0.492	0.21	2
PARCELA 145	2.778	0.88	241.45	10	10	0.492	0.29	5
PARCELA 145	2.778	0.90	285.71	10	10	0.492	0.35	10
PARCELA 145	2.778	0.95	344.23	10	10	0.492	0.45	25
PARCELA 145	2.778	0.98	388.49	10	10	0.492	0.52	50
PARCELA 145	2.778	0.99	432.76	10	10	0.492	0.59	100
PARCELA 145	2.778	0.99	535.54	10	10	0.492	0.72	500
PARCELA 145	2.778	0.99	579.80	10	10	0.492	0.78	1000

Tabla 20.- Gasto calculado con el Método Racional Americano

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

2p = 0.208 A*P/ 0.5d+ 0.6Tc	; C = precip. Eter	tiva / precip. to	otal ; Q	e = C*Qp							
CUENCA	1	р	Pe	A	C	Duración de la fluvia (d)		Tc	Qp	Qe	TR
No.	(mm/br)	(mm)	(mm)	(km2)		(minutos)	(horas)	(horas)	(m³/seg)	(m³/seg)	años
PARCELA 145								N =	85	(Número de escurrimiento)	
PARCELA 145	182.93	30.49	26.03	0.005	0.85	10.0	0.17	0.17	0.17	0.15	2
PARCELA 145	241.45	40.24	36.32	0.005	0.88	10.0	0.17	0.17	0.22	0.20	5
PARCELA 145	285.71	47.62	42.63	0.005	0.90	10.0	0.17	0.17	0.27	0.24	10
PARCELA 145	344.23	57.37	54.46	0.005	0.95	10.0	0.17	0.17	0.32	0.30	25
PARCELA 145	388.49	64.75	63.17	0.005	0.98	10.0	0.17	0.17	0.36	0.35	50
PARCELA 145	432.76	72.13	71.19	0.005	0.99	10.0	0.17	0.17	0.40	0.40	100
PARCELA 145	535.54	89.26	88.32	0.005	0.99	10.0	0.17	0.17	0.50	0.49	500
PARCELA 145	679.80	96.63	95.70	0:005	0.99	10.0	0.17	0.17	0.54	0.53	1000

Tabla 21.- Gasto calculado con el Método Hidrograma Triangular

	GASTO DE	DISEÑO DE LAS CUEN	ICAS ANALIZADAS	1
Cuencas	Tr		Método	Gasto de Promedi
Cuencas	11	Racional Americano	Hidrograma Unitario Triangular	Gasto de Promedio
	Años	m³/s	m³/s	m³/s
PARCELA 145	2	0.21	0.15	0.18
PARCELA 145	5	0.29	0.20	0.24
PARCELA 145	10	0.35	0.24	0.29
PARCELA 145	25	0.45	0.30	0.38
PARCELA 145	50	0.52	0.35	0.44
PARCELA 145	100	0.59	0.40	0.49
PARCELA 145	500	0.72	0.49	0.61
PARCELA 145	1000	0.78	0.53	0.66

Tabla 22.- Resumen de los métodos utilizados

Para representar el comportamiento de la avenida de diseño se utilizó la metodología para construir el hidrograma representativo de cada una de las cuencas analizadas utilizando la propuesta por el Soil Conservation Service (SCS), el cual fue desarrollado después del estudio de una gran cantidad de hidrogramas y de cuencas. Este hidrograma se obtiene de dividir la escala de los gastos entre el gasto pico (Qp) y la escala del tiempo entre el tiempo pico (tp). En la Tabla 23 se tienen los valores de construcción del hidrograma resultante.

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

Tiempo (min)	Gasto (m³/s)	Tiempo (min)	Gasto (m³/s)	Tiempo (min)	Gasto (m³/s)
0.00	0.000	1.20	0.920	2.60	0.130
0.10	0.015	1.25	0.880	2.75	0.105
0.20	0.075	1.30	0.840	2.80	0.098
0.30	0.160	1.40	0.750	3.00	0.075
0.40	0.280	1.50	0.660	3.25	0.053
0.50	0.430	1.60	0.560	3.50	0.036
0.60	0.600	1.75	0.450	3.75	0.026
0.70	0.770	1.80	0.420	4.00	0.018
0.75	0.830	2.00	0.320	4.25	0.012
0.80	0.890	2.20	0.240	4.50	0.009
0.90	0.970	2.25	0.220	4.75	0.006
1.00	1.000	2.40	0.180 5.00		0.004
1.10	0.980	2.50	0.150		

Tabla 23.- Datos de Hidrograma SCS.

El hidrograma resultante del análisis de la avenida de diseño del predio, representado por la Figura 34.

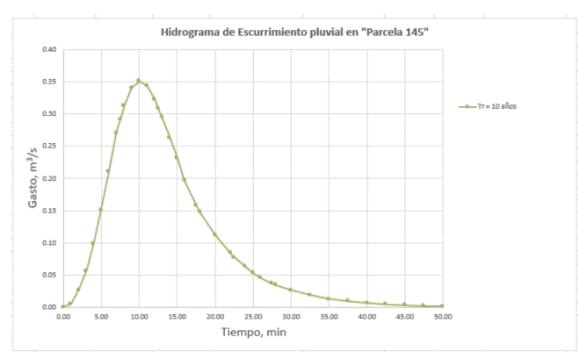


Figura 34.- Hidrograma resultante del gasto generado en el predio "PARCELA 145" para un Tr = 10 años

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

III. <u>RESULTADOS DEL ANALISIS DE NUESTRO MATERIAL PETREO: BALASTO y TEZONTLE</u> DE ACUERDO A LAS NORMAS DE CALIDAD SICT

Centro SICT Veracruz
Unidad General de Servicios Técnicos
Unidad de Laboratorios

SICT.-6.29.306-195.

Xalapa, Ver., a 23 de mayo de 2023.

Ing. Mauricio Fernández Beltrán Representante Legal de Grupo MAFER, S.A. de C.V. Santiago Tuxtla, Ver.

En atención a su petición según oficio S/N, de fecha 09 del mes en curso, en el cual solicita se realicen ensayes de calidad a muestras de material pétreo, mismas que fueron traídas por personal de la empresa que usted representa y las fueron entregadas en la Unidad General de Servicios Técnicos; dichas muestras proceden de los bancos ubicados en las parcelas Nos. 145 y 197 del ejido Tapalapan, Mpio. de Santiago Tuxtla, Ver.; de las cuales una muestra es de tipo basalto sano de alta densidad y la otra es de tipo Tezontle rojo de baja densidad y solicita se realicen ensayes para los usos probables de: subrasante, base hidráulica, carpeta asfáltica y concreto hidráulico; al respecto en anexos al presente me es grato enviar a usted, los resultados obtenidos para cada uso que se le pretende dar.

Cabe comentar que las muestras recibidas, fueron en greña, la de tezontle y en fragmentos de roca la de basalto; por las características físicas que presentaba la de tezontle, solo se le realizaron ensayes de calidad para capa subrasante, en cambio la de basalto se le realizaron ensayes de calidad para base hidráulica, carpeta asfáltica y concreto hidráulico, previo tratamiento de trituración y cribado para tamaños máximos de 3", 2", ¾" y ¾", 1" respectivamente; por los resultados obtenidos las muestras analizadas cumplen con normas de calidad SICT.

Atentamente.

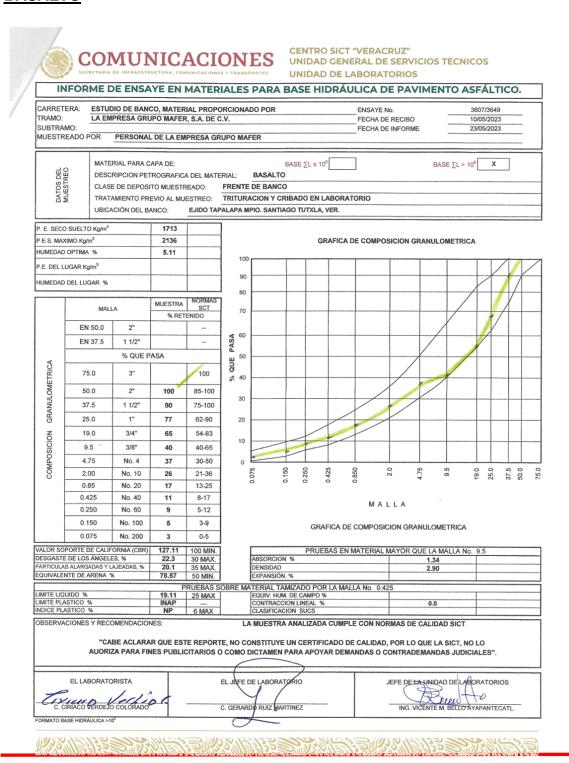
Jefe de la Unidad General de Servicios Técnicos. - Presente,

Ing. Tomas Antonio Ibarra García.

C. c. p Control de Gestián No. 435

VMBA/nvb*

Carretera: Xalapa-Veracruz, km. 0+700, Col. SAHOP, C.P. 91190, Xalapa, Ver.


T: 01 228 186 90 42 www.gob.mx/sct

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

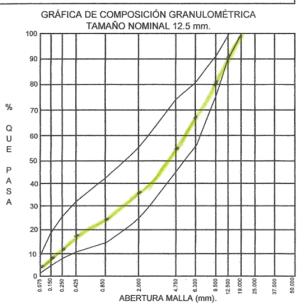
III.1. BASALTO

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

CENTRO SICT "VERACRUZ" COMUNICACIONES UNIDAD GENERAL DE SERVICIOS TÉCNICOS **UNIDAD DE LABORATORIOS**

		INFORME DE ENSA	YE DE CONCRETO	ASFALTIC	0.				
NORMAS	APLICABLES:	MATERIAL PÉTRE	D: N.CMT.4.04/17	MEZCL	A ASFÁLTICA: N.C	MT.4.0	5.003/16		
CARRET	TERA: ESTUDIO DE	BANCO, MATERIAL F	ROPORCIONADO PO	RLA	ENSAYES No.	3593	/3606		
TRAMO:	EMPRESA GRUPO M	IAFER, S.A. DE C.V.			FECHA RECIBI	DO:	10/05/2023		
SUBTRA	AMO:		***************************************		FECHA INFOR	ME:	23/05/2023		
MUESTF	MUESTREADO POR: PERSONAL DE LA EMPRESA MAFER, S.A. DE C.V. $1x10^6 < \sum L \le 30x10$								
DEL	DESCRIPCIÓN DEL MA	TERIAL: BASALTO		PARA	USARSE EN: CAI	RP.ASF	=		
I RE	TRATAMIENTO PREVIO	AL MUESTREO:	TRITURACION Y CRIB	ADO EN LA	BORATORIO				
ES	MUESTREO REALIZADO	O EN:							
DATOS	BANCO DONDE PROCE	DE EL MATERIAL PÉTR	EO: EJIDO TA	PALAPA MP	IO. SANTIAGO TU	XTLA			
VIAJE No.	TENDIDO DEL KA	VI. AL KN	. CUERPO		CARRIL	CAP	A		


EN EL TENDIDO:

Г	PESO	SECO SU	ELTO, 1726Kg/m ³		NORMATIVA
		DESIGNACIÓN	MALLA No.	% QUE PASA	SCT
	2	2"	50.000		-
1	1 1	1 1/2"	37.500		
	当	1"	25.000		
	Q	3/4"	19.000	100 🏏	100
잂]]	1/2"	12.500	90	90-100
DEL MATERIAL PÉTREO	COMPOSICIÓN GRANULOMÉTRICA	3/8"	9.500	80	76-92
Ä	1 R	1/4"	6.300	67	56-81
	Z	No. 4	4.750	55	45-74
lặ	<u> </u>	No. 10	2.000	36	25-55
山	1 55	No. 20	0.850	24	15-42
F	, o	No. 40	0.425	17	11-32
≥	\	No. 60	0.250	12	8-25
닖	ō	No. 100	0.150	8	5-18
ä	0	No. 200	0.075	4	2-9
3					
CARACTERISTICAS	DENSID	AD RELATIVA		2.84	2.4 MÍN.
E	DESGAS	TE DE LOS A	NGELES	17.62	30 % MÁX.
۱ ٪	DESGAS	TE MICRODE	VAL		18 % MÁX.
Į jiii	PARTICU	LAS ALARGAD	IAS Y LAJEADAS	31.4	40 % MÁX.
5	PARTICU		UNA CARA		95 % MÍN.
13	TRITURA	NDAS	DOS O MÁS CARAS		85 % MÍN.
A	DESPRE	NDIMIENTO	POR FRICCIÓN		20 % MÁX.
O	INTEMPER		EN SULFATO DE SODIO		15 % MÁX.
	ACELERA	DO (5 CICLOS)	EN SULFATO DE MAGNESIO		20 % MÁX.
	3		ARENA Y FI	NOS	
	DENSID	AD RELATIVA		2.75	2.4 MİN.
	ANGULA	RIDAD			45 % MÍN.

TEMP. DE LA MEZCLA AL SALIR DE LA PLANTA:

EQUIVALENTE DE ARENA

AZUL DE METILENO, mg/g.

AL INICIAR LA COMPACTACIÓN:

CARACTERISTICAS DE LA MEZCLA ASFÁLTICA							
CARACTERISTÍCA	EN LA MEZCLA	DEL DISEÑO	CARACTERISTICA	EN LA MEZCLA	NORMA SCT		
PV MARSHALL			ESTABILIDAD, Kg.		816 MÍN		
CONTENIDO DE ASFALTO			FLUJO, mm.		2.0-3.5		
TIPO DE ASFALTO			VACIOS, %.		3.0-5.0		
AFINIDAD			VAM, %.		14.0 MÍN.		

OBSERVACIONES Y RECOMENDACIONES: LA MUESTRA ANALIZADA CUMPLE CON NORMAS DE CALIDAD SICT. "CABE ACLARAR QUE ES REPORTE, NO CONSTITUYE UN CERTIFICADO DE CALIDAD, POR LO QUE LA SICT, NO LO AUTORIZA PARA FINES PUBLICITARIOS O COMO DICTAMEN PARA APOYAR DEMANDAS O CONTRADEMANDAS JUDICIALES".

50 % MÍN.

15 MÁX.

LABORATORISTA	JEFE DE LABORATORIO	JEFE DE LA UNIDAD DE LABORATORIOS
Quelingent.	4	Den to
C. HONORIO SEGURA RUIZ	C. GERARDO RUIZ MARTÍNEZ	ING. VICENTE MAURILIO BELLO AYAPANTECAT
CONCRETO ASEÁLTICO 2022 T N 12 E	4	

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

PÉTREOS PARA CONCRETO HIDRÁULICO 2023

12

CENTRO SICT "VERACRUZ"
UNIDAD GENERAL DE SERVICIOS TÉCNICOS
UNIDAD DE LABORATORIOS

INFORME DE ENSAYE DE AGREGADOS INERTES PARA CONCRETO Y/O MORTERO

ESTUDIO DE BANCO, MATERIAL PROPORCIONADO POR LA 3650/3672 ENSAYE No. EMPRESA GRUPO MAFER FECHA DE RECIBIDO: 10/05/2023 FECHA DE INFORME: 23/05/2023 MUESTREADOR POR: PERSONAL DE LA EMPRESA MATERIAL PROCEDENTE DEL BANCO: EJIDO TAPALAPA MPIO. SANTIAGO TUXTLA, VER CLASIFICACION PETROGRAFICA: BASALTO PARA USARSE CON TAMAÑO MÁXIMO DE COMPOSICION GRANULOMETRICA AGREGADOS ARENA GRAVA MUESTRA NUMERO RETENIDOS ACUMULATIVOS % RETENIDOS ACUMULATIVOS % MALLAS PESO VOL SUELTO Kg./m3 1658 1465 ORIGINAL ORIGINAL CORREGIDA PESO VOL COMPACTO Kg./m3 19.31 1625 No. 4 3" DENSIDAD APARENTE 2.84 2.97 No. 8-10 ABSORCION % 1.52 0.92 1 1/2" No. 16 37 MATERIA ORGANICA (SIN LAVADO) 1" 100 No. 30 68 MATERIA ORGANICA (CON LAVADO) 3/4" 74 No. 50 87 GRUMOS Y ARCILLAS 1/2" 52 No. 100 92 RELACION G/A EN PESO 3/8" 35 No. 200 93 TRATAMIENTO EFECTUADO EN EL LABORATORIO A LOS MATERIALES: No. 4 4 CHAROLA 100 ARENA: TRITURADO CHAROLA 0 M. F 2.94 2.30-3.10 GRAVA: TRITURADO T.MAX T. MAX 4.75CM GRAFICAS DE COMPOSICION GRANULOMETRICA 100 % RETENIDO 70 50 40 LIMITES DE ARENAS PAR MORTEROS 20 80 90 MALLAS OBSERVACIONES Y RECOMENDACIONES LA MUESTRA ANALIZADA CUMPLE CON NORMAS DE CALIDAD SICT CABE ACLARAR QUE ESTE REPORTE NO CONSTITUYE UN CERTIFICADO DE CALIDAD, POR LO QUE LA SICT NO LO AUTORIZA" PARA FINES PUBLICITARIOS O COMO DICTAMEN PARA APOYAR DEMANDAS O CONTRADEMANDAS JUDICIALES" LABORATORISTA JEFE DE LABORATORIÓ JEFE DE LA UNIDAD DE LABORATORIOS Felle ING. VICENTE MAURILIO BELLO AYAPANTÉCAT

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

III.2. TEZONTLE

"CABE ACLARAR QUE ESTE REPORTE NO CONSTITUYE UN CERTIFICADO DE CALIDAD, POR LO QUE LA SICT NO LO AUTORIZA PARA FINES PUBLICITARIOS O COMO DICTAMEN PARA APOYAR DEMANDAS O CONTRA-DEMANDAS JUDICIALES".

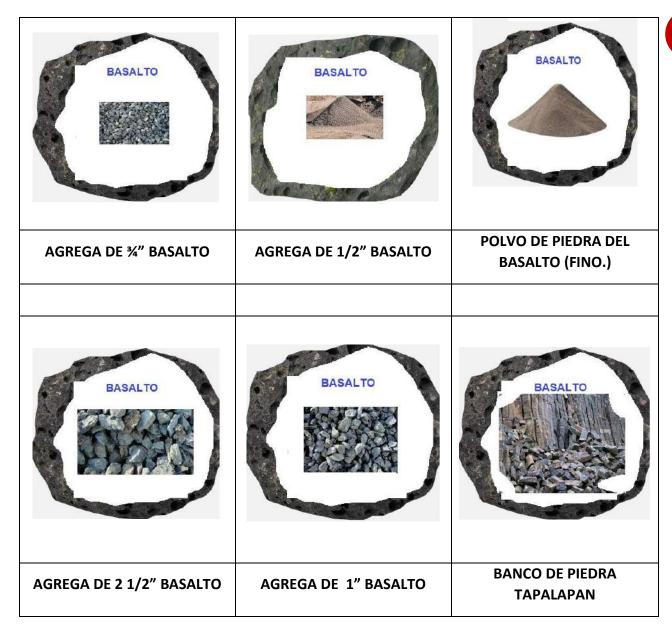
EL LABORATORISTA

EL JESE DEL LABORATORIO

Vo. Bo.

Delle Control Cont

commo to sail a more de com mais de commo de la filma de la commo de la filma de la commo della commo


F-03.SUBRASANTE-2023

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

IV. <u>NUESTROS PRODUCTOS DE BASALTO</u>

SEDENA: Proyecto TREN MAYA

Número de Proveedor: DGI/TM/C-ELE-22-0936

Características: 1. Tamaño entre 5mm a 38 mm 2. El peso de la grava en el concreto debe ser de alrededor del 85% 3. Debe ser de una composición estable: relacionado principalmente con basaltos y andesitas, a veces dacitas y dioritas.

V. <u>NUESTROS BANCOS DE MATERIALES PETREOS CUENTAN CON:</u>

- Resolución del Impacto Ambiental, emitido por la Secretaria del Medio Ambiente del Estado de Veracruz de Ignacio de la Llave, con prorroga actualizada, según oficio: SEDEMA/DGSSEA/5144/2021 EXP. N° IRA/MIA-244/2021, REF. IRA-0998/2021. Se adjunta copia del documento.
- 2. Licencia de cambio de Uso de Suelo Municipal, del municipio de Santiago Tuxtla, Ver. Se adjunta copia del documento.
- **3.** Convenio de certificación de empresa verde y responsable para la gestión sustentable de la piedra basáltica destinada a la Construcción del tren maya, celebrado con la Procuraduría Estatal de Protección al Medio Ambiente del Estado de Veracruz de Ignacio de la Llave. Se adjunta copia del documento.
- **4.** Somos Proveedores del Proyecto SEDENA-TREN MAYA, según Número de Proveedor DGI/TM/C-ELE-22-0936. Se adjunta copia del documento.

VI. GENERALIDADES

- 1. Surtimos cualquier cantidad de Balasto Requerida.
- 2. Surtimos cualquier cantidad de nuestros productos de Basalto y Tezontle.
- 3. Vendemos a cualquier parte del País y del Extranjero.